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An aircraft that can sense changes in its own internal state, and adapt accordingly

Motivation: Enabling a self-aware aircraft

Prior work has shown that this provides[Singh 2017] 

– Increased survivability
– Increased utilization
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digital twin

Our approach:

Create a digital twin that adapts to the evolving structural health of the UAV,

providing near real-time capability estimates that enable dynamic decision-making.
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The need for physics-based digital twins

Such critical decisions require digital twins that are

• Predictive

• Reliable

• Explainable

Physics-based models provide this

• Simulate new, previously unseen scenarios

• Obey the laws of physics

• Quantifiable error/uncertainty

• Parameters represent real-world quantities

But…

• Typically slow to evaluate, challenging to update



Reduced-order models provide low-cost physics-based approximations 
that enable digital twins

Reduced basis (RB) method: powerful certified reduced models for a wide range of 
PDEs

Limitations of a traditional RB method:

1. Training the reduced model requires many solutions of a costly full-order FE 
model
– Even a single FE solution may be prohibitively expensive in many industrial contexts

2. Restricted to relatively few parameters 
– Large assets require many parameters, both the offline and online cost largely 

eliminate any benefit of model order reduction

3. Only admits parametrizations which induce continuous dependence of the PDE 
solution on parameters 
– Unable to incorporate variations in topology, geometry, meshes
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The Static-Condensation Reduced-Basis-Element (SCRBE) method

Based on research from the last ~15 years with many contributors—

SCRBE developed by Huynh, Knezevic, and Patera [Huynh 2013] 

Why take a component-based approach? “Divide and conquer”

1. Divide model into components

2. Train reduced models at component-level

3. Assemble reduced models and rapidly solve
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From components to systems

system parameters
" = ["%, "', "(]

component parameters "%

Instantiate and Assemble Apply Loads

+   assembly parameters "' +   load parameters "( =



Start with the usual finite element problem statement:
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Express interior DOFs in terms of port DOFs
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Substitute to get a system involving only port DOFs:
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Issue: Schur complement > is large (B×B), and expensive to compute

Solving a component-based model
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Model reduction strategy

Model reduction occurs in two ways:

i. Port Reduction:
Retain only the first J dominant modes at component ports

à Reduces the size of >:
M	×	M	 J	×	J

ii. Bubble Reduction: 
Replace the finite element space inside each component with
an RB space of dimension L

à Reduces the size of matrices required to compute entries of >:

N	×	N	 L	×	L
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The benefits of SCRBE:

1. Model training can be performed using only small groups of components
à Never have to solve full-system FE model

2. Component-wise RB admits a modest number of parameters per component
à System may have many spatially distributed parameters

3. Component instantiation and replacement offers more flexible parametrization
à Allows for changes to topology, geometry, meshes etc.



Implementation: RB-FEA and Akselos Integra

We are using the Akselos Integra software

• Implementation of patented RB-FEA
algorithm, based heavily on SCRBE

• Enables fast high-fidelity structural 
analysis. Typically observe 1000x 
speedup or more compared to FEA for 
large-scale models

• A posteriori error indicators

• Hybrid solver for local non-linearities

• Cloud-based parallel solvers

Graphic courtesy of David Knezevic, CTO Akselos, https://akselos.com/

[Ballani 2018]

[Huynh 2013]
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Flight test vehicle

Customized 12ft Telemaster aircraft

Custom wing sets: pristine & damaged

Accelerometers + vibration sensors
24 strain gauges per wing

Internal structure
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Component-based reduced-order model

Performance:
FEA: 387,906 dof 55 seconds 

RB-FEA: 694 dof 0.03 seconds

à 1000x speedup, 30 solves/second

• Multiple material types (carbon fiber, carbon rod, plywood, foam)

• Multiple element types (solid, shell, beam)



From component-based model to digital twin

Offline: Construct a library of damage states for each component
• Create multiple copies of each component 

• Train components for parameter ranges of interest

• Compute associated aircraft structural load constraints
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Online: Solve a classification problem to estimate the UAV state
Use sensor data to perform probabilistic classification of aircraft state into model 
library entries

Probabilistic 
Classifier

Model 
Update

Measured Strain

Predicted Strain

Rapid RB-FEA model evaluation provides near real-time digital twin updates
à near real-time capability updates

From component-based model to digital twin



Strain Measurements:

Classifier output: UAV Digital Twin:

Simulation results
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