From Physics-based Models to Predictive Digital Twins via Interpretable Machine Learning

Michael Kapteyn*, Prof. Karen Willcox INFORMS 2020 | November 13, 2020

Massachusetts Institute of Technology

Outline

1 Motivation

Predictive digital twins to inform critical decision-making

2 Methodology

Interpretable data-driven adaptation of physics-based models

3 Results

Enabling a self-aware UAV: progress and outlook

Motivation: Enabling a **self-aware aircraft**

An aircraft that can sense changes in its own internal state, and adapt accordingly

Prior work has shown that this provides [Kordonowy 2011, Singh 2017]

- Increased survivability
- Increased utilization

Motivation: Enabling a self-aware aircraft

We create a digital twin that adapts to the evolving structural health of the UAV, providing near real-time capability predictions to enable dynamic decision-making.

Toward predictive, reliable, explainable digital twins

Physics-based models

- Ubiquitous throughout engineering
 Simulate new previously unseen scenarios
- Obey laws of physics with quantifiable uncertainty
- Parameters represent real-world quantities

Toward predictive, reliable, explainable digital twins

Physics-based models

- Ubiquitous throughout engineering
- Simulate new previously unseen scenarios
- Obey laws of physics with quantifiable uncertainty
- Parameters represent real-world quantities

Data-driven models

- Leverage the explosion in data availability
- Enable asset-specific decision-making
- Typically "black-box"
- Difficult or impossible to understand and explain
- Generalization requires representative training data

Toward predictive, reliable, explainable digital twins

Physics-based models

- Ubiquitous throughout engineering
- Simulate new previously unseen scenarios
- Obey laws of physics with quantifiable uncertainty
- Parameters represent real-world quantities

Data-driven models

- Leverage the explosion in data availability
- Enable asset-specific decision-making
- Typically "black-box"
- Difficult or impossible to understand and explain
- Generalization requires representative training data

Our approach:

Interpretable machine learning models trained on physics-based models

Predictive Digital Twin: Physics-based models meet data-driven learning

Offline:

Construct library of physics-based models representing different asset states

Use model library to train a classifier that predicts asset state based on sensor data

Physics-based model library

From physics-based model library to predictive digital twin

Given: a library of models for various UAV damage states

- Covers representative damage states
- Enables assimilation of sensor measurements (strain)
- Enables estimation of flight capability (stress, failure criteria)

Interpretable machine learning

1. Use predictive models to generate training data

Training data: (X, y)

Features, X: Model predictions of strain at strain gauge locations, corrupted with random noise

Labels, y: Location and severity of damage (2 locations, 5 severity levels = 25 possible states)

- 1. Use predictive models to generate training data
- 2. Use machine learning to train an interpretable, explainable reactive model

Training data: (X, y)

Features, X: Model predictions of strain at strain gauge locations, corrupted with random noise

Labels, y: Location and severity of damage (2 locations, 5 severity levels = 25 possible states

Interpretable machine learning via optimal classification trees

Goal: Find a binary tree, *T*, that partitions the space of possible sensor measurements, and assigns to each partition the model that best explains the measurements

 $T: \boldsymbol{x} \to \boldsymbol{y}$

Optimal Classification Trees [Bertsimas, 2019] uses mixed-integer optimization techniques to find a partition in the form of an optimal binary tree, T:

tradeoff parameter

$$\begin{array}{ccc}
& & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

- + Globally optimal
- + Scalable
- Naturally extends to hyperplane splits

Optimal classification trees in practice: damage in region 1

Optimal classification trees in practice: damage in region 1

Region 1

Classification Tree for Region 1

Region 2

Optimal classification trees in practice: damage in region 2

Classification Tree for Region 2

Accuracy depends on:

- 1. Depth of the tree
- 2. Split complexity (maximum number of sensors in each split)

Accuracy depends on:

- 1. Depth of the tree
- 2. Split complexity (maximum number of sensors in each split)
- 3. Sensor placement

Physics-based model allows us to **simulate many candidate sensors** Optimal classification trees **scale to allow many input features**

Accuracy depends on:

- 1. Depth of the tree
- 2. Split complexity (maximum number of sensors in each split)
- 3. Sensor placement

Physics-based model allows us to **simulate many candidate sensors** Optimal classification trees **scale to allow many input features**

→ let the optimal classification tree select most informative sensors

Recall our approach: data-driven adaptation of component-based reduced-order models

Offline:

Construct library of physics-based models representing different asset states

Use model library to train a classifier that predicts asset state based on sensor data

Flight of the UAV

Strain Measurements

Combining physics-based models and interpretable machine learning enables predictive digital twins

Optimal Classification Trees

- Highly interpretable
- Natural framework for sensor selection
- Rapid online classification
- As expressive as standard neural networks

Future Work

- Test with multimodal experimental data
- Strategies for sensor fault detection and robustness
- Flight demonstration

High-consequence decisions require digital twins that are predictive • reliable • explainable

For a project overview and additional references visit https://kiwi.oden.utexas.edu/research/digital-twin

Funding acknowledgements:

- Air Force Office of Scientific Research (AFOSR) Dynamic Data-Driven Application Systems (DDDAS)
- The Boeing Company
- SUTD-MIT International Design Centre