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An aircraft that can sense changes in its own internal state, and adapt accordingly

Prior work has shown that this provides [Kordonowy 2011, Singh 2017] 

– Increased survivability

– Increased utilization

sense 

structural 

data

estimate 

structural 

state

predict

flight 

capabilities

dynamically 

replan

mission

1

Motivation: Enabling a self-aware aircraft



predictive digital twin

We create a digital twin that adapts to the evolving structural health of the UAV,

providing near real-time capability predictions to enable dynamic decision-making.
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• Ubiquitous throughout engineering

• Simulate new previously unseen scenarios 

• Obey laws of physics with quantifiable uncertainty

• Parameters represent real-world quantities

Physics-based models
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• Leverage the explosion in data availability

• Enable asset-specific decision-making

• Typically “black-box”

• Difficult or impossible to understand and explain

• Generalization requires representative training data

Data-driven models
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• Leverage the explosion in data availability

• Enable asset-specific decision-making

• Typically “black-box”

• Difficult or impossible to understand and explain

• Generalization requires representative training data

Data-driven models

Interpretable machine learning models trained on physics-based models

Our approach:



Offline:

Online:

Use model library to train a classifier that 

predicts asset state based on sensor data

Construct library of physics-based models 

representing different asset states

sensor data

Analysis,

Prediction,

Optimization

updated digital twin

current digital twin
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Predictive Digital Twin: 

Physics-based models meet data-driven learning



Physics-based model library



Given: a library of models for various UAV damage states

• Covers representative damage states

• Enables assimilation of sensor measurements (strain)

• Enables estimation of flight capability (stress, failure criteria)

How to choose an appropriate model from the library?

Informed by online sensor data

• Which sensors to install?

• Which sensors to query?

• Decision boundaries?

• Reliability + robustness

From physics-based model library to predictive digital twin
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Interpretable machine learning



1. Use predictive models to generate training data

asset state noisy sensor data

Forward (predictive) model
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Onboard sensors inform which model is used in the digital twin

𝑿𝒚

Training data:  (𝑿, 𝒚)

Features, 𝑿 : Model predictions of strain at strain gauge locations, corrupted with random noise

Labels,    𝒚 : Location and severity of damage (2 locations, 5 severity levels = 25 possible states)

c



1. Use predictive models to generate training data

2. Use machine learning to train an interpretable, explainable reactive model 

asset state noisy sensor data

Forward (predictive) model

Inverse (reactive) model
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Onboard sensors inform which model is used in the digital twin

𝑿𝒚

Training data:  (𝑿, 𝒚)

Features, 𝑿 : Model predictions of strain at strain gauge locations, corrupted with random noise

Labels,    𝒚 : Location and severity of damage (2 locations, 5 severity levels = 25 possible states

c



Goal: Find a binary tree, 𝑇, that partitions the space of possible sensor 
measurements, and assigns to each partition the model that best explains the 
measurements

𝑇 ∶ 𝒙 → 𝒚

Optimal Classification Trees [Bertsimas, 2019] uses mixed-integer optimization techniques 
to find a partition in the form of an optimal binary tree, T:

min
Τ

R T + 𝛼|T|

Globally optimal

• Scalable

• Naturally extends to hyperplane splits 9

error on training data complexity of the tree

tradeoff parameter

Interpretable machine learning via optimal classification trees



Optimal classification trees in practice: damage in region 1
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Training Data

Region 1 Region 2

Sensor locations



Optimal classification trees in practice: damage in region 1

Region 1 Region 2 10

Sensor locations
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11

Training Data

Region 2 

stiffness 

reduction

sensor 10 > 106?

𝑦 𝑛

20% pristine

𝑦 𝑛

sensor 10 > 102?

sensor 11 > 107?

sensor 11 > 106?

𝑦 𝑛

60% 20%

𝑦 𝑛

80% 40%

𝑦 𝑛

sensor 11 > 103?

sensor 10 > 109?

sensor 11 > 108?

𝑦 𝑛

80% 20%

𝑦 𝑛

Classification Tree for Region 2

Region 1 Region 2

Sensor locations



Onboard sensors inform which model is used in the digital twin

Accuracy depends on:

1. Depth of the tree

2. Split complexity (maximum number of sensors in each split)

Increasing tree depth

Increasing split complexity
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Onboard sensors inform which model is used in the digital twin
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Candidate sensor locations

Accuracy depends on:

1. Depth of the tree

2. Split complexity (maximum number of sensors in each split)

3. Sensor placement

• Physics-based model allows us to simulate many candidate sensors

• Optimal classification trees scale to allow many input features



Accuracy depends on:

1. Depth of the tree

2. Split complexity (maximum number of sensors in each split)

3. Sensor placement

• Physics-based model allows us to simulate many candidate sensors

• Optimal classification trees scale to allow many input features

let the optimal classification tree select most informative sensors 

Onboard sensors inform which model is used in the digital twin
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Candidate sensor locations

= optimal sensor locations



Recall our approach: data-driven adaptation of 

component-based reduced-order models

Offline:

Online:

Use model library to train a classifier that 

predicts asset state based on sensor data

Construct library of physics-based models 

representing different asset states

sensor data

Analysis,

Prediction,

Optimization

updated digital twin

current digital twin
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Flight of the UAV

Aggressive flight path

Conservative flight path
Health estimates

Strain Measurements

Rapid Classification
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Test with multimodal experimental data

Strategies for sensor fault detection and robustness 

Flight demonstration

Future Work

Combining physics-based models and
interpretable machine learning enables 
predictive digital twins 
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Highly interpretable

Natural framework for sensor selection

Rapid online classification

As expressive as standard neural networks

Optimal Classification Trees



For a project overview and additional references visit https://kiwi.oden.utexas.edu/research/digital-twin 

High-consequence decisions require digital twins that are

predictive  •  reliable  •  explainable
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